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Abstract

Some curves have a simple definition in a biangular system of coordinates. A point A
in the plane is located by a system of two lines rotating around two fixed points B, C on
an xx’-axis and two angles (θ, θ′). Triangle ABC defines a biangular coordinate system if
the two angles depends on one parameter. A similar system is the bipolar coordinates (well
known for central conics and their foci), with distances (ρ, ρ′) to the poles (B, C) fixed on
axis-x’x and a relation between the two lengths. We examine a few examples of the Maclaurin
sectrices or Plateau’s curves.

1 Biangular and bipolar coordinates

Figure 1: Bipolar (ρ, ρ′) and biangular (θ, θ′) coordinates with poles C, B

Biangular coordinates use two fixed points C(0, 0) and B(1, 0) and two lines rotating around
these points. The two angles are measured from the direction x’x defined by the two points B
and C on this axis. The position of point A is the third vertice of the triangle CAB. When the
lines intersect the common point is A. When they are parallele the point A goes to infinity : it
is an asymptotic direction.
The coordinates are two angles θ = ∠ xBA and θ′ = ∠ xCA. When θ = θ′ + kπ we get the
asymptotic directions of the curve. The biangular equation of a curve is a relation between these
angles f(θ, θ′)=0 or θ’=g(θ) or θ = h1(t) and θ′ = h2(t) (with t a parameter).
The bipolar coordinates of A, with same poles C and B, are two lengths : ρ = BA and ρ’ = CA.
Here the condition for the existence of point A is the triangular inequality: ρ+ ρ′ ≥ BC = 1.

Bipolar coordinates have connections with the biangular ones. We shall often use the sine
formula in the triangle with usual notations - see fig. (2) -:

a

sinA
=

b

sinB
=

c

sinC
=
abc

2.S
= 2.R

where S is the area and R the radius of the circumcircle.
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Figure 2: A triangle : vertices A, B, C and sides a, b, c.

1.1 Orthogonal trajectories of generalized cassinians. Sectrices of Maclaurin.

Given a biangular or bipolar equation of a family of plane curves, it is possible to find orthogonal
trajectories - see (1). If a family of curves,locus of A, in bipolar is : f(b, c) = f(ρ, ρ′) = h, with
h the parameter, then :

∂f

∂ρ
.dρ+

∂f

∂ρ′
.dρ′ = 0

to find the orthogonal trajectories of this family of curves we change in this equation the ratio
dρ/dρ′ by the ratio ρ.dθ/ρ′.dθ′. So for orthogonal trajectories we have :

∂f

∂ρ
.ρ.dθ +

∂f

∂.ρ′
ρ′.dθ′ = 0

In the triangle ABC we have :
ρ

ρ′
=

sin θ

sin θ′

We can eliminate the ratio ρ/ρ′ between the above equations and the resulting differential equa-
tion is the one of orthogonal trajectories in biangular coordinates this time.
For the general Cassinian ovals f = ρn.ρ′p =constant, then

n.ρn−1ρ′p.dρ+ p.ρn.ρ′p−1.dρ′ = 0

n.ρnρ′p.dθ + p.ρnρ′p.dθ′ = 0

n.dθ + p.dθ′ = 0

and so :
n.θ + p.θ′ = K = constant

This last formula is the the biangular expression for the Maclaurin sectrices (a linear relation,

if n, p are rational numbers, between θ and θ′).

2 Curves defined by biangular coordinates with θ′ = f(θ).

We suppose the fixed points are B and C on the x’x-axis. The angle B = θ and the second
angle C = θ′ = f(θ) - so angle B = f−1(θ′) - Then angle A = π−θ−f(θ). In the triangle
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ABC the relations between sides and angles are :

ρ

sin θ′
=

ρ′

sin(π − θ)
=

a

sin Â
=

a

sin(θ − θ′)
from these equations and the angles relations we deduce two (mono)-polar coordinates

equations for each fixed point on the x’x-axis. The equations of these curves in polar

coordinates (ρ, θ) or (ρ′, θ′) and θ′ = f(θ) - with condition f(θ) 6= θ - are :

ρ = a. sin[f(θ)]
sin[f(θ)−θ] pole at B .

ρ′ = a. sin(f−1(θ′))
sin[f−1(θ′)−θ′] pole at C.

3 Sectrices of Maclaurin

The sectrices of Maclaurin, with angular offset, are defined by θ′ = f(θ) = k.θ + θo with

condition (k 6= 1) :

ρ = a. sin[k.θ+θ0)]
sin[(1−k)θ+θ0] pole at B.

If θo = 0 the polar equation is :

ρ = a. sin[k.θ)]
sin[(1−k)θ] pole at B.

If k is changed in -k the equation become with change of pole :

ρ = a. sin[k.θ)]
sin[(k+1)θ] pole at C.

A similar derivation with the other pole C gives and k.θ = φ− φo gives :

ρ′ = a. sin[(φ−φ0)/k]
sin[(φ−φ0)/k−φ] pole at C.

If φo = 0 the polar equation is :

ρ′ = a. sin(φ/k)
sin[(k−1)/k)φ] pole at C.

3.1 Plateau’s curves

If we choose commensurables values of k (k = m/n,m 6= n and m, n integers) so that

curves are algebraic then for θo = 0 and φo = 0 the first above equation can be trans-

formed in the following parametric equations - the origin of orthonormal coordinates is

now at (a/2, 0) - :

x = a. sin[(m+n)t]
2 sin[(m−n)t] and y = a. sin(mt). sin(nt)

sin[(m−n)t]
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3.2 Bipolar and biangular coordinates, inversions with centers at the poles
and an axial symmetry.

The poles B and C that define the curve and inversions centered at these poles are useful
in the geometry of the sectrices. We trace the circles tangent at B and C to the base
line x’x and passing through A. We impose that BC is a constant length (=1 w.l.o.g.)
and point A is moving on any curve in the plane then the points B’ and C’ second point
of intersection of BA and CA respectively with the circles angent at B and C to x’x
(see figure) then B’ and C’ will move on the inverses of A-curve w.r.t. centers B and C
respectively. If point I is the middle of BC the second point of intersection of tangent
circles to x’x called A’ is the inverse of A-curve in the inversion: (I, IB2 = IC2).

Figure 3: Inversions with centers at pole and circles through A tangent at B and C to x’x

A is a point moving on the curve in bipolar system of coordinates with poles in C and
B on x’x axis. B’ and C’ are inverses of A as above. We call B” and C” the inverses of B’
(C,CB2) and C’ (B,BC2). The 5 points A, B’, B”, C’, C” are cocyclic. It is possible to
define inversions that transform the locus of A. For these inversions we choose the poles
at C or B and the radius of inversion equal to BC (=1).

We can identify 3 inversions and an axial symmetry listed in the following table :

No Inversions or symmetry Pole / axis
1 BA.BB′ = BC2 B
2 BC ′.BC” = BC2 B
3 CA.CC ′ = CB2 C
4 CB′.CB” = CB2 C
5 B” Sym C’ and B’ sym C” Axis TI (mediator of CB)
6 IA.IA′ = IC2 = IB2 I

These transformations reduce the numbers of different curves if we distinguish loci up
to an axial symmetry w.r.t. the mediator of BC.
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Figure 4: Inversions/symmetry - ĈBC ′ = B̂CB′ = B̂AC - points A, B’, B”, C’, C” are cocyclic.

3.3 Triangles with linear angular relations. The number theory problem.

We can find many papers - see (1), (2), (3) - about commensurables triangles ABC with

angular relations between two angles. For example Ĉ = 2.B̂, equivalent to a relation be-

tween the 3 angles since in euclidean geometry Â+ B̂+ Ĉ = π. A linear relation between
angles (A, B, C) - with rational coefficients - in the triangle. Using sine formulas a relation
between angles can be translated, into a relation between the side lengths (a, b, c). We
suppose the triangles on BC moves maintaining the same proportionality between angles.
In paper (1) a few angle relations and the corresponding algebraic formulas relating the
sides are proved and listed.
This problem is not strictly a geometric question since it focuses on the case of integer
side lengths. So we can consider ”integers” triangles as a generalization of Pythagorean
triples. We limit here only a geometric point of view. Pythagorean triples are associated

to the circle and relation a2 + b2 = c2 and angular equivalent : Â+ B̂ = Ĉ = π/2.
We recall some of the relations in the following table (see (1) for delails) :
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No F (A,B,C) = 0 f(a, b, c) = 0

1 Â = B̂ a = b(isocele triangle)

2 Â+ B̂ = Ĉ a2 + b2 = c2(rectangle triangle)

3 Ĉ = 2.B̂ c2 = b2 + ab

4 Ĉ = 2.B̂ + Â c2 = b2 + ac

5 Ĉ = 2.Â− B̂ a2 = b2 + c2 − bc
6 Ĉ = (1/2)Â− B̂ a2 = b2 + c2 + bc

7 Ĉ = 2.(B̂ − Â) bc2 = (b− a)(b+ a)2

8 B̂ = 3.Ĉ a2c = (b+ c)(b− c)2

If we fix one of the three side, say a, and put it on x’x coinciding with length CB=1
then the last column of the above table gives the corresponding bipolar equation equation
f(1, b, c) = 0. If we put b or c on x’x gives the two other bipolar equations : f(a, 1, c) = 0
and f(a, b, 1) = 0.

3.4 Triangles with linear angular relations. Example : Ĉ = k.B̂. k=constant

These curves are defined by mean of a triangle with two fixed points C and B on the x’x-
axis repecting a linear relation between two angles in the triangle and called sectrices of
Maclaurin. The triangle depends on a parameter θ, so the it is defined by one parameter
and the third top A describes a plane curve given by a biangular equation. We can place
the triangle in three possible positions on the pole-axis : AB, AC in place of BC on the
base line (x’x-axis) when the linear relation between angles is held during the movement.

3.5 The simplest example : Ĉ = B̂, the isoceles triangle

In the case where angles Ĉ = B̂ are on the x’x-axis, then the third vertice A is on the
mediator of BC. The locus of A is a line. The relation between sides is c = b.
If A and B are fixed (Ĉ = B̂) then AC is constant (=1) so the point C is on a circle
centered in A. Note that these circles and lines are exchanged by inversion. In the same

way if A and C are fixed (Ĉ = B̂) then AB is constant (=1) so the point B is on a circle
centered in A.

3.6 Another example : Ĉ = 2.B̂

In this case Ĉ = 2.B̂, there is a relation between the sides of the triangle : c2 = b2 + ab.

1- If D is the foot on AB of bissectrix CD of angle Ĉ then a well known theorem gives
AD = b

b+a
c.

2- The triangles ADC and ACB are similar (see fig. 5-1) so :

AD

b
=
b

c
−→ AD =

b2

c
=

b

b+ a
.c −→ c2 = b(b+ a).

ρ

sin 2.θ
=

ρ′

sin(π − θ)
=

a

sin Â
=

a

sin(θ − θ′)
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Figure 5: Ĉ = 2.B̂ and the 3 positions of the triangle on x’x

3.6.1 Ĉ = 2.B̂ and vertices C, B on x’x-axis

Since c2 = b2 + ab we can write c2 in two manners (CB on x’x see fig. 5-1), and then
calculate b, if φ is angle C, we have :

c2 = a2 + b2 − 2ab cos θ and c2 = b2 + ab

a2 − ab(1 + 2 cosφ) = 0 so : b = ρ′ =
a

1 + 2 cosφ

This is the polar equation of a conic ρ = p
1+e. cos θ

with the pole at a focus. Since e=2, our
conic is a hyperbola of excentricty 2.
Now we evaluate b2 = ρ2, (angle B is θ = φ/2) :

c2 = a2 +
a2

(1 + 2 cosφ)2
− 2a2 cosφ

1 + 2 cosφ
= a2

2(1 + cosφ)

(1 + 2 cosφ)2
= a2

4 cos2(φ/2)

(1 + 2 cosφ)2

so ρ = c = a 2 cos(φ/2)
4 cos2(φ/2)−1 = a 2 cos θ

4 cos2 θ−1 , this is the polar equation of an hyperbola of ex-

centricity e=2. But this time the pole is on the summit on the other branch of the
hyperbola.

3.6.2 Ĉ = 2.B̂ and C, A on x’x-axis

The sine formula (see fig. 5-2) gives :

ρ′

sin 3θ
=

ρ

sin θ
=

a

sin 2θ

And ρ′ = a sin 3θ
sin 2.θ

= a.4 cos
2 θ−1

2 cos θ
. this polar equation is the one of the trissetrix of Maclaurin

inverse of the above hyperbola. The pole is at the double point.
We have also :ρ = a sin θ

sin 2θ
= a

2 cos θ
. Since the polar angle φ = 3θ then the polar equation is

ρ = a
2. cosφ/3

. This is the equation represent also the Trissectrix if Maclaurin, the pole is

this time at the summit on the symmetry axis.

3.6.3 Ĉ = 2.B̂ and A, B on x’x-axis

The sine formula (applied on fig. 5-3) gives :

ρ′

sin 3θ
=

ρ

sin 2θ
=

a

sin θ
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Figure 6: The Hyperbola (e=2) and Pascal Limacon

Then ρ′ = a sin 3θ
sin θ

= a(4 cos2 θ − 1). And since φ = 2θ then ρ′ = a(4 cos2 φ/2 − 1) =
a(1 + 2 cosφ).
This curve is a Limacon of Pascal with pole at the double point and inverse of the hyper-
bola with excentricity=2.
Similarly ρ = a sin 2θ

sin θ
= 2a. cos θ. And since φ = 3.θ then ρ = 2a. cosφ/3.

this is the equation of a Limacon of Pascal with pole at the summit of the little loop.
So we have the triples of curves in the plane :

- An hyperbola of eccentricity e=2
- A trissectrix of Maclaurin
- A Limacon of Pascal.

These three curves, by pair, are transformed by inversion and possess linked properties.
The three curves are exchanged by a group of inversion+reflection of six elements isomor-
phic to the permutation group S3 the same that permutes the roots of the third degree
equation or the group of geometric transformations that keeps vertices of an equilateral
triangle.

Figure 7: The Hyperbola (e=2) and Trisectrix of Maclaurin
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Figure 8: Trisectrix of Maclaurin and Pascal Limacon

4 The general case : Ĉ = k . B̂ (k a rational parameter)

The sine formula in the triangle is : sinA
a

= sinB
b

= sinC
c

. The two relations for C the
external angle :

Ĉ = φ = k.θ = k.B̂ and Â = α = φ− θ
sinα

a
=

sin θ

b
=

sinφ

c

Figure 9: The general case Ĉ = k . B̂ and the 3 positions of the triangle on x’x

4.1 1-Side BC on x’x

With the pole in C [BC on x’x] :

ρ = c = a
sinφ

sin(φ− θ)
= a

sin k.θ

sin(k − 1)θ

With the pole in B [BC on x’x] :

ρ = b = a
sin θ

sin(φ− θ)
= a

sinφ/k.

sin k−1
k
φ
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4.2 2-Side AB on x’x

With the pole in B [AB on x’x] :

ρ = a = c
sin(φ− θ)

sin θ
= a

sin(k − 1)θ

sin k.θ

With the pole in A [AB on x’x] :

ρ = b = c
sin θ

sinφ
= c

sin 1
k−1α

sin k
k−1α

4.3 3-Side AC on x’x

With the pole in A [AC on x’x] we have α = φ− θ and :

ρ = c = b
sinφ

sin θ
= b

sin k
k−1α

sin 1
k−1α

With the pole in C [AC on x’x] :

ρ = a = b
sin(φ− θ)

sin θ
= b

sin(φ− φ/k)

sinφ/k
= b

sin k−1
k
φ

sinφ/k

These six equations represent only three curves because each of the above have polar
equations w.r.t. two pole on the x’x axis (respectively in B, C or A).
We can resume these results in the following table :

Side on x’x Left-pole Right-pole

(BC) c = a sin k.θ
sin(k−1)θ b = a sinφ/k.

sin k−1
k φ

(AB) a = c sin(k−1)θ
sin k.θ b = c

sin 1
k−1α

sin k
k−1α

(AC) c = b
sin k

k−1α

sin 1
k−1α

a = b
sin k−1

k φ

sinφ/k

As we can see in the above table, the six polar equations can be paired and this shows
that these equations give three couples of inverse curves.

5 Another method to create curves in bipolar/biangular coor-
dinates

We consider a circle tangent at A to y-axis, and point O opposite to A on it (OA=1).

A line (∆) turn around A and cut the circle at an other point H. A line through O cuts

line AH at M. We note θ = ÂOM , ρ = OM and search for the locus of M when angle

ÂOM = k.ÂOH = k.ŷAM . We have the relation OM = ρ. cos(k − 1)φ = cosφ and so

for pole at O :

ρ = cosφ
cos(k−1)φ = cos θ/k

cos k−1
k θ

.
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Figure 10: H sur le cercle of diameter AO, M on the curve

This family of curves depending on k contains some well known examples. The values k
and k’ linked by the involution k.k′ = k+k′ or k′ = k

k−1 and give two curves corresponding
in the inversion centered in A.
This class-equation contains some known curves as for :

- k′ = −1 = k
k−1 when k=1/2 the curve is the rectangular hyperbola → ρ = cos θ

cos 2θ
.

- k = 1/2 then curve Ck is the strophoid → ρ = cos 2θ
cos θ

- k = 2/3 then curve Ck is the special limacon of Pascal ρ = 2 cos θ − 1
- k=1 is the circle of diameter OA, the locus of H.
- k=2 Circle of center A.
- k′ = −2 = k

k−1 when k=2/3 the curve is the hyperbola of excentricity e=2 with polar

equation ρ = 1
2 cos θ−1 . This hyperbola and limacon of Pascal are inverse one of the other.

6 The general case : ÂOM = k.ÂOH or θ = k.φ

It is possible, by analogy with the case B̂ = k.Ĉ of the sections above, to place in turn
each side of the triangle on the base-axis x’x. The case studied in preceeding section is
the side OA on x’x. And we have found two polar equations with poles at O and at A.
We shall examine the two other cases : side AM on x’x and side MO on x’x. The sine

Figure 11: The 3 positions of the triangle on x’x

formula in the triangle is :
sinO

AM
=

sinA

MO
=

sinM

OA
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Here we use the two relations :

ÂOM = θ = k.φ = k.ÂOH and ÔAM = π/2− φ

sin θ

AM
=

sin(π/2− φ)

MO
=

sin(k − 1).φ

OA

6.1 1-Side OA on x’x

With the pole in O [OA on x’x] θ = k.φ :

ρ = OM = OA.
cosφ

sin(θ − φ)
= OA.

cos 1
k
θ

cos k−1
k
θ

With the pole in A [OA on x’x] :
The sine formula in triangle OAM gives :

r = MA = OA.
sinO

sin M̂
= OA

sin θ

sin(π/2− (k − 1)φ)
= OA.

sin k.φ

cos(k − 1)φ

Another way to find this result is :

r = AH +HM = OA.[sinφ+ cosφ. tan(θ − φ)] = OA.[sinφ+ cosφ. tan(k − 1)φ]

r = OA[
sinφ. cos(k − 1)φ+ cosφ. sin(k − 1)φ

cos(k − 1)φ
] = OA.

sin kφ

cos(k − 1)φ

6.2 2-Side AM on x’x

With the pole in A [AM on x’x] :

ρ = AO = AM.
sin[(π/2− (k − 1)φ]

sin k.φ
= AM.

cos(k − 1)φ

sin k.φ

With the pole in M [AM on x’x]then α = (k − 1)φ :

r = MO = AM.
sin(π/2− φ)

sin kφ
= AM.

cosφ

sin kφ
= AM

cos α
k−1

sin k
k−1φ

L’angle polaire est α count from My so :

α = (k − 1)φ and r =
cos 1

k−1α

sin k
k−1φ

6.3 3-Side MO on x’x

We set µ = polar angle ÂMy = (k − 1)φ and φ = µ
k−1 . And angle A = π/2− φ.

With the pole in M [MO on x’x] : The polar angle is θ = k.φ and :

ρ = MA = MO.
sin k.φ

sin(π/2− φ)
= MO.

sin k.φ

cosφ
= MO

sin k
k−1 .µ

cos 1
k−1 .µ

With the pole in O [MO on x’x] :
The polar angle is θ = k.φ −→ φ = θ/k.

r = OA = MO.
cosµ

sin(π/2− φ)
= MO.

cosµ

cosφ
= MO.

cos(k − 1).φ

cosφ
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r = MO.
cos k−1

k
θ

cos 1
k
θ

These six equations represent only three curves because each of the above equations
are polar equations w.r.t. two poles on the x’x axis (respectively in O, A or M).
We can resume these results in the following table :

Side on x’x Left-pole Right-pole

(OA) OM = OA. cos θ/k

cos k−1
k θ
→ (1) AM = OA. sin k.φ

cos(k−1).φ → (2)

(AM) AO = AM.cos(k−1)φ
sin k.φ → (3) MO = AM.

cos 1
k−1α

sin k
k−1α
→ (4)

(MO) MA = MO.
sin k

k−1µ

cos 1
k−1µ
→ (5) OA = MO.

cos k−1
k θ

cos θ/k → (6)

The six equations can be associated by couples of inverse curves : [(1)↔ (6)], [(2)↔ (3)]
and [(4)↔ (5)].
For the case k=1/2 as example, the six equations are given in the following table :

Side on x’x Left-pole Right-pole
(OA) OM = OA. cos 2θ

cos θ
→ (Strophoid) AM = OA. tanφ/2→ (Strophoid)

(AM) AO = AM. tanφ/2→ (Strophoid) MO = AM. cos 2.α
sinα

→ (Strophoid)
(MO) MA = MO. sinµ

cos 2.µ
→ (Eq.Hyperbola) OA = MO. cos θ

cos 2.θ
→ (Eq.Hyperbola)

7 First case of sectrices of Maclaurin for 1 ≤ m, n ≤ 10

Some tables of the first Sectrices of Maclaurin - when θ0 = φ0 = 0 - for small values of m,
n are have listed at the end of this paper and show the rapid complications of these curves
when the two parmeters increase. These tables use Plateau’s parametric expressions.
Note that beyond m, n > 3 these curves are, in my knowledge, not connected to known
classe of curves. And except their angular geometric definition it does seem evident to
reveal new interesting geometric properties.
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Figure 12: Sectrices of Maclaurin -Plateau’s curves, m,n ≤ 5
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Figure 13: Sectrices of Maclaurin-Plateau’s curves, 0 ≤ m ≤ 5 and 6 ≤ n ≤ 5
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Figure 14: Sectrices of Maclaurin-Plateau’s curves, 6 ≤ m ≤ 10 and 6 ≤ n ≤ 10
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Figure 15: Sectrices of Maclaurin- Plateau’s curves, m,n < 10
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